Enter chinese/english word(s), Taiwan address or math. expression :

可輸入英文單字中文字詞台灣地址計算式 按[Enter]重新輸入
Internet Engineering Task Force (IETF)                           G. Zorn
Request for Comments: 6734                                   Network Zen
Category: Standards Track                                          Q. Wu
ISSN: 2070-1721                                                   Huawei
                                                              V. Cakulev
                                                          Alcatel Lucent
                                                            October 2012

     Diameter Attribute-Value Pairs for Cryptographic Key Transport

Abstract

   Some Authentication, Authorization, and Accounting (AAA) applications
   require the transport of cryptographic keying material.  This
   document specifies a set of Attribute-Value Pairs (AVPs) providing
   native Diameter support of cryptographic key delivery.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/RFC 6734.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Zorn, et al.                 Standards Track                    [Page 1]
RFC 6734 Diameter Key Transport AVPs October 2012 Table of Contents 1. Introduction ....................................................2 2. Terminology .....................................................3 2.1. Requirements Language ......................................3 2.2. Technical Terms and Acronyms ...............................3 3. Attribute-Value Pair Definitions ................................3 3.1. Key AVP ....................................................3 3.1.1. Key-Type AVP ........................................4 3.1.2. Key-Name AVP ........................................4 3.1.3. Keying-Material AVP .................................4 3.1.4. Key-Lifetime AVP ....................................4 3.1.5. Key-SPI .............................................5 4. Security Considerations .........................................5 5. IANA Considerations .............................................5 5.1. AVP Codes ..................................................5 5.2. AVP Values .................................................5 6. Acknowledgements ................................................6 7. References ......................................................6 7.1. Normative References .......................................6 7.2. Informative References .....................................6 1. Introduction The Diameter Extensible Authentication Protocol (EAP) application [RFC 4072] defines the EAP-Master-Session-Key and EAP-Key-Name AVPs for the purpose of transporting cryptographic keying material derived during the execution of certain Extensible Authentication Protocol (EAP) [RFC 3748] methods (for example, EAP-TLS [RFC 5216]). At most one instance of either of these AVPs is allowed in any Diameter message. However, recent work (see, for example, [RFC 5295]) has specified methods to derive other keys from the keying material created during EAP method execution that may require transport in addition to the Master Session Key (MSK). Also, the EAP Re-authentication Protocol (ERP) [RFC 6696] specifies new keys that may need to be transported between Diameter nodes. This document specifies a set of AVPs allowing the transport of multiple cryptographic keys in a single Diameter message. Zorn, et al. Standards Track [Page 2]
RFC 6734 Diameter Key Transport AVPs October 2012 2. Terminology 2.1. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC 2119]. 2.2. Technical Terms and Acronyms DSRK Domain-Specific Root Key [RFC 5295]. MSK Master Session Key [RFC 3748]. rMSK re-authentication MSK [RFC 6696]. This is a per-authenticator key, derived from the rRK (below). rRK re-authentication Root Key, derived from the Extended Master Session Key (EMSK) [RFC 3748] or DSRK [RFC 6696]. 3. Attribute-Value Pair Definitions This section defines new AVPs for the transport of cryptographic keys in the Diameter EAP application [RFC 4072], as well as other Diameter applications. 3.1. Key AVP The Key AVP (AVP Code 581) is of type Grouped. It contains the type and keying material and, optionally, an indication of the usable lifetime of the key, the name of the key and a Security Parameter Index (SPI) with which the key is associated. Key ::= < AVP Header: 581 > < Key-Type > { Keying-Material } [ Key-Lifetime ] [ Key-Name ] [ Key-SPI ] * [ AVP ] Zorn, et al. Standards Track [Page 3]
RFC 6734 Diameter Key Transport AVPs October 2012 3.1.1. Key-Type AVP The Key-Type AVP (AVP Code 582) is of type Enumerated. This AVP identifies the type of the key being sent. The following decimal values are defined in this document: DSRK (0) A Domain-Specific Root Key [RFC 5295]. rRK (1) A re-authentication Root Key [RFC 6696]. rMSK (2) A re-authentication Master Session Key [RFC 6696]. If additional values are needed, they are to be assigned by IANA according to the policy stated in Section 5.2. 3.1.2. Key-Name AVP The Key-Name AVP (AVP Code 586) is of type OctetString. It contains an opaque key identifier. Exactly how this name is generated and used depends on the key type and usage in question and is beyond the scope of this document (see [RFC 5247] and [RFC 5295] for discussions of key name generation in the context of EAP). 3.1.3. Keying-Material AVP The Keying-Material AVP (AVP Code 583) is of type OctetString. The exact usage of this keying material depends upon several factors, including the type of the key and the link layer in use and is beyond the scope of this document. 3.1.4. Key-Lifetime AVP The Key-Lifetime AVP (AVP Code 584) is of type Unsigned32 and represents the period of time (in seconds) for which the contents of the Keying-Material AVP (Section 3.1.3) is valid. NOTE: Applications using this value SHOULD consider the beginning of the lifetime to be the point in time when the message containing the keying material is received. In addition, client implementations SHOULD check to ensure that the value is reasonable; for example, the lifetime of a key should not generally be longer than the session lifetime (see Section 8.13 of [RFC 6733]). Zorn, et al. Standards Track [Page 4]
RFC 6734 Diameter Key Transport AVPs October 2012 3.1.5. Key-SPI The Key-SPI AVP (AVP Code 585) is of type Unsigned32 and contains an SPI value that can be used with other parameters for identifying associated keying material. 4. Security Considerations Transporting keys is a security-sensitive action. Some forms of keying material are already protected and can be sent safely over the open Internet. However, if a Key AVP contains a Keying-Material AVP that is not already protected, then the Diameter messages containing that Key AVP MUST only be sent protected via mutually authenticated TLS or IPsec. The security considerations applicable to the Diameter base protocol [RFC 6733] are also applicable to this document, as are those in Section 8.4 of RFC 4072 [RFC 4072]. 5. IANA Considerations IANA has assigned values as described in the following sections. 5.1. AVP Codes Codes have been assigned for the following AVPs using the policy specified in [RFC 6733], Section 11.1.1: o Key (581, Section 3.1) o Key-Type (582, Section 3.1.1) o Keying-Material (583, Section 3.1.3) o Key-Lifetime (584, Section 3.1.4) o Key-SPI (585, Section 3.1.5) o Key-Name (586, Section 3.1.2) 5.2. AVP Values IANA has created a new registry for values assigned to the Key-Type AVP and populated it with the decimal values defined in this document (Section 3.1.1). New values may be assigned for the Key-Type AVP using the "Specification Required" policy [RFC 5226]; once values have been assigned, they MUST NOT be deleted, replaced, or modified. Zorn, et al. Standards Track [Page 5]
RFC 6734 Diameter Key Transport AVPs October 2012 6. Acknowledgements Thanks (in no particular order) to Niclas Comstedt, Semyon Mizikovsky, Hannes Tschofenig, Joe Salowey, Tom Taylor, Frank Xia, Lionel Morand, Dan Romascanu, Bernard Aboba, Jouni Korhonen, Stephen Farrel, Joel Halpern, Phillip Hallam-Baker, Sean Turner, and Sebastien Decugis for useful comments, suggestions, and review. 7. References 7.1. Normative References [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC 3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, "Extensible Authentication Protocol (EAP)", RFC 3748, June 2004. [RFC 4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible Authentication Protocol (EAP) Application", RFC 4072, August 2005. [RFC 5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008. [RFC 6733] Fajardo, V., Arkko, J., Loughney, J., and G. Zorn, "Diameter Base Protocol", RFC 6733, October 2012. 7.2. Informative References [RFC 5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS Authentication Protocol", RFC 5216, March 2008. [RFC 5247] Aboba, B., Simon, D., and P. Eronen, "Extensible Authentication Protocol (EAP) Key Management Framework", RFC 5247, August 2008. [RFC 5295] Salowey, J., Dondeti, L., Narayanan, V., and M. Nakhjiri, "Specification for the Derivation of Root Keys from an Extended Master Session Key (EMSK)", RFC 5295, August 2008. [RFC 6696] Cao, Z., He, B., Shi, Y., Wu, Q., Ed., and G. Zorn, Ed., "EAP Extensions for the EAP Re-authentication Protocol (ERP)", RFC 6696, July 2012. Zorn, et al. Standards Track [Page 6]
RFC 6734 Diameter Key Transport AVPs October 2012 Authors' Addresses Glen Zorn Network Zen 227/358 Thanon Sanphawut Bang Na, Bangkok 10260 Thailand Phone: +66 (0) 909-201060 EMail: glenzorn@gmail.com Qin Wu Huawei Technologies Co., Ltd. 101 Software Avenue, Yuhua District Nanjing, Jiangsu 21001 China Phone: +86-25-56623633 EMail: sunseawq@huawei.com Violeta Cakulev Alcatel Lucent 600 Mountain Ave. 3D-517 Murray Hill, NJ 07974 US Phone: +1 908 582 3207 EMail: violeta.cakulev@alcatel-lucent.com Zorn, et al. Standards Track [Page 7]