Enter chinese/english word(s), Taiwan address or math. expression :

可輸入英文單字中文字詞台灣地址計算式 按[Enter]重新輸入
Internet Engineering Task Force (IETF)                         G. Huston
Request for Comments: 7730                                         APNIC
Obsoletes: 6490                                                S. Weiler
Category: Standards Track                                        Parsons
ISSN: 2070-1721                                            G. Michaelson
                                                                   APNIC
                                                                 S. Kent
                                                                     BBN
                                                            January 2016

     Resource Public Key Infrastructure (RPKI) Trust Anchor Locator

Abstract

   This document defines a Trust Anchor Locator (TAL) for the Resource
   Public Key Infrastructure (RPKI).  This document obsoletes RFC 6490
   by adding support for multiple URIs in a TAL.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/RFC 7730.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Huston, et al.               Standards Track                    [Page 1]
RFC 7730 RPKI Trust Anchor Locator January 2016 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 2 2. Trust Anchor Locator . . . . . . . . . . . . . . . . . . . . 2 2.1. Trust Anchor Locator Format . . . . . . . . . . . . . . . 2 2.2. TAL and Trust Anchor Certificate Considerations . . . . . 3 2.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Relying Party Use . . . . . . . . . . . . . . . . . . . . . . 5 4. Security Considerations . . . . . . . . . . . . . . . . . . . 6 5. References . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.1. Normative References . . . . . . . . . . . . . . . . . . 6 5.2. Informative References . . . . . . . . . . . . . . . . . 7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 8 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 8 1. Introduction This document defines a Trust Anchor Locator (TAL) for the Resource Public Key Infrastructure (RPKI) [RFC 6480]. This format may be used to distribute trust anchor material using a mix of out-of-band and online means. Procedures used by Relying Parties (RPs) to verify RPKI signed objects SHOULD support this format to facilitate interoperability between creators of trust anchor material and RPs. This document obsoletes RFC 6490 by adding support for multiple URIs in a TAL. 1.1. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119]. 2. Trust Anchor Locator 2.1. Trust Anchor Locator Format This document does not propose a new format for trust anchor material. A trust anchor in the RPKI is represented by a self-signed X.509 Certification Authority (CA) certificate, a format commonly used in PKIs and widely supported by RP software. This document specifies a format for data used to retrieve and verify the authenticity of a trust anchor in a very simple fashion. That data is referred to as the TAL. The motivation for defining the TAL is to enable selected data in the trust anchor to change, without needing to effect redistribution of the trust anchor per se. In the RPKI, certificates contain Huston, et al. Standards Track [Page 2]
RFC 7730 RPKI Trust Anchor Locator January 2016 extensions that represent Internet Number Resources (INRs) [RFC 3779]. The set of INRs associated with an entity acting as a trust anchor is likely to change over time. Thus, if one were to use the common PKI convention of distributing a trust anchor to RPs in a secure fashion, then this procedure would need to be repeated whenever the INR set for the entity acting as a trust anchor changed. By distributing the TAL (in a secure fashion), instead of distributing the trust anchor, this problem is avoided, i.e., the TAL is constant so long as the trust anchor's public key and its location do not change. The TAL is analogous to the TrustAnchorInfo data structure specified in [RFC 5914], which is on the Standards Track. That specification could be used to represent the TAL, if one defined an rsync URI extension for that data structure. However, the TAL format was adopted by RPKI implementors prior to the PKIX trust anchor work, and the RPKI implementer community has elected to utilize the TAL format, rather than define the requisite extension. The community also prefers the simplicity of the ASCII encoding of the TAL, versus the binary (ASN.1) encoding for TrustAnchorInfo. The TAL is an ordered sequence of: 1) a URI section, 2) a <CRLF> or <LF> line break, 3) a subjectPublicKeyInfo [RFC 5280] in DER format [X.509], encoded in Base64 (see Section 4 of [RFC 4648]). To avoid long lines, <CRLF> or <LF> line breaks MAY be inserted into the Base64-encoded string. where the URI section is comprised of one of more of the ordered sequence of: 1.1) an rsync URI [RFC 5781], 1.2) a <CRLF> or <LF> line break. 2.2. TAL and Trust Anchor Certificate Considerations Each rsync URI in the TAL MUST reference a single object. It MUST NOT reference a directory or any other form of collection of objects. The referenced object MUST be a self-signed CA certificate that conforms to the RPKI certificate profile [RFC 6487]. This certificate is the trust anchor in certification path discovery [RFC 4158] and validation [RFC 5280] [RFC 3779]. Huston, et al. Standards Track [Page 3]
RFC 7730 RPKI Trust Anchor Locator January 2016 The validity interval of this trust anchor SHOULD reflect the anticipated period of stability of the particular set of INRs that are associated with the putative trust anchor. The INR extension(s) of this trust anchor MUST contain a non-empty set of number resources. It MUST NOT use the "inherit" form of the INR extension(s). The INR set described in this certificate is the set of number resources for which the issuing entity is offering itself as a putative trust anchor in the RPKI [RFC 6480]. The public key used to verify the trust anchor MUST be the same as the subjectPublicKeyInfo in the CA certificate and in the TAL. The trust anchor MUST contain a stable key. This key MUST NOT change when the certificate is reissued due to changes in the INR extension(s), when the certificate is renewed prior to expiration, or for any reason other than a key change. Because the public key in the TAL and the trust anchor MUST be stable, this motivates operation of that CA in an offline mode. Thus, the entity that issues the trust anchor SHOULD issue a subordinate CA certificate that contains the same INRs (via the use of the "inherit" option in the INR extensions of the subordinate certificate). This allows the entity that issues the trust anchor to keep the corresponding private key of this certificate offline, while issuing all relevant child certificates under the immediate subordinate CA. This measure also allows the Certificate Revocation List (CRL) issued by that entity to be used to revoke the subordinate CA certificate in the event of suspected key compromise of this online operational key pair that is potentially more vulnerable. The trust anchor MUST be published at a stable URI. When the trust anchor is reissued for any reason, the replacement CA certificate MUST be accessible using the same URI. Because the trust anchor is a self-signed certificate, there is no corresponding CRL that can be used to revoke it, nor is there a manifest [RFC 6486] that lists this certificate. If an entity wishes to withdraw a self-signed CA certificate as a putative trust anchor, for any reason, including key rollover, the entity MUST remove the object from the location referenced in the TAL. Where the TAL contains two or more rsync URIs, then the same self- signed CA certificate MUST be found at each referenced location. In order to increase operational resilience, it is RECOMMENDED that the domain name parts of each of these URIs resolve to distinct IP Huston, et al. Standards Track [Page 4]
RFC 7730 RPKI Trust Anchor Locator January 2016 addresses that are used by a diverse set of repository publication points, and these IP addresses be included in distinct Route Origin Authorizations (ROAs) objects signed by different CAs. 2.3. Example rsync://rpki.example.org/rpki/hedgehog/root.cer MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAovWQL2lh6knDx GUG5hbtCXvvh4AOzjhDkSHlj22gn/1oiM9IeDATIwP44vhQ6L/xvuk7W6 Kfa5ygmqQ+xOZOwTWPcrUbqaQyPNxokuivzyvqVZVDecOEqs78q58mSp9 nbtxmLRW7B67SJCBSzfa5XpVyXYEgYAjkk3fpmefU+AcxtxvvHB5OVPIa BfPcs80ICMgHQX+fphvute9XLxjfJKJWkhZqZ0v7pZm2uhkcPx1PMGcrG ee0WSDC3fr3erLueagpiLsFjwwpX6F+Ms8vqz45H+DKmYKvPSstZjCCq9 aJ0qANT9OtnfSDOS+aLRPjZryCNyvvBHxZXqj5YCGKtwIDAQAB 3. Relying Party Use In order to use the TAL to retrieve and validate a (putative) trust anchor, an RP SHOULD: 1. Retrieve the object referenced by (one of) the URI(s) contained in the TAL. 2. Confirm that the retrieved object is a current, self-signed RPKI CA certificate that conforms to the profile as specified in [RFC 6487]. 3. Confirm that the public key in the TAL matches the public key in the retrieved object. 4. Perform other checks, as deemed appropriate (locally), to ensure that the RP is willing to accept the entity publishing this self- signed CA certificate to be a trust anchor. These tests apply to the validity of attestations made in the context of the RPKI relating to all resources described in the INR extension of this certificate. An RP SHOULD perform these functions for each instance of TAL that it is holding for this purpose every time the RP performs a resynchronization across the local repository cache. In any case, an RP also SHOULD perform these functions prior to the expiration of the locally cached copy of the retrieved trust anchor referenced by the TAL. Huston, et al. Standards Track [Page 5]
RFC 7730 RPKI Trust Anchor Locator January 2016 In the case where a TAL contains multiple URIs, an RP MAY use a locally defined preference rule to select the URI to retrieve the self-signed RPKI CA certificate that is to be used as a trust anchor. Some examples are: o Using the order provided in the TAL o Selecting the URI randomly from the available list o Creating a prioritized list of URIs based on RP-specific parameters, such as connection establishment delay If the connection to the preferred URI fails, or the retrieved CA certificate public key does not match the TAL public key, the RP SHOULD retrieve the CA certificate from the next URI, according to the local preference ranking of URIs. 4. Security Considerations Compromise of a trust anchor private key permits unauthorized parties to masquerade as a trust anchor, with potentially severe consequences. Reliance on an inappropriate or incorrect trust anchor has similar potentially severe consequences. This TAL does not directly provide a list of resources covered by the referenced self-signed CA certificate. Instead, the RP is referred to the trust anchor itself and the INR extension(s) within this certificate. This provides necessary operational flexibility, but it also allows the certificate issuer to claim to be authoritative for any resource. Relying parties should either have great confidence in the issuers of such certificates that they are configuring as trust anchors, or they should issue their own self-signed certificate as a trust anchor and, in doing so, impose constraints on the subordinate certificates. 5. References 5.1. Normative References [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC 2119, March 1997, <http://www.rfc-editor.org/info/RFC 2119>. [RFC 3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP Addresses and AS Identifiers", RFC 3779, DOI 10.17487/RFC 3779, June 2004, <http://www.rfc-editor.org/info/RFC 3779>. Huston, et al. Standards Track [Page 6]
RFC 7730 RPKI Trust Anchor Locator January 2016 [RFC 4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC 4648, October 2006, <http://www.rfc-editor.org/info/RFC 4648>. [RFC 5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC 5280, May 2008, <http://www.rfc-editor.org/info/RFC 5280>. [RFC 5781] Weiler, S., Ward, D., and R. Housley, "The rsync URI Scheme", RFC 5781, DOI 10.17487/RFC 5781, February 2010, <http://www.rfc-editor.org/info/RFC 5781>. [RFC 6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for X.509 PKIX Resource Certificates", RFC 6487, DOI 10.17487/RFC 6487, February 2012, <http://www.rfc-editor.org/info/RFC 6487>. [X.509] ITU-T, "The Directory: Public-key and attribute certificate frameworks", ITU-T Recommendation X.509, ISO/IEC 9594-8, October 2012. 5.2. Informative References [RFC 4158] Cooper, M., Dzambasow, Y., Hesse, P., Joseph, S., and R. Nicholas, "Internet X.509 Public Key Infrastructure: Certification Path Building", RFC 4158, DOI 10.17487/RFC 4158, September 2005, <http://www.rfc-editor.org/info/RFC 4158>. [RFC 5914] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor Format", RFC 5914, DOI 10.17487/RFC 5914, June 2010, <http://www.rfc-editor.org/info/RFC 5914>. [RFC 6480] Lepinski, M. and S. Kent, "An Infrastructure to Support Secure Internet Routing", RFC 6480, DOI 10.17487/RFC 6480, February 2012, <http://www.rfc-editor.org/info/RFC 6480>. [RFC 6486] Austein, R., Huston, G., Kent, S., and M. Lepinski, "Manifests for the Resource Public Key Infrastructure (RPKI)", RFC 6486, DOI 10.17487/RFC 6486, February 2012, <http://www.rfc-editor.org/info/RFC 6486>. Huston, et al. Standards Track [Page 7]
RFC 7730 RPKI Trust Anchor Locator January 2016 Acknowledgments This approach to trust anchor material was originally described by Robert Kisteleki. The authors acknowledge the contributions of Rob Austein and Randy Bush, who assisted with drafting this document and with helpful review comments. The authors acknowledge with work of Roque Gagliano, Terry Manderson, and Carlos Martinez Cagnazzo in developing the ideas behind the inclusion of multiple URIs in the TAL. Authors' Addresses Geoff Huston APNIC Email: gih@apnic.net URI: http://www.apnic.net Samuel Weiler Parsons 7110 Samuel Morse Drive Columbia, MD 21046 United States Email: weiler@tislabs.com George Michaelson APNIC Email: ggm@apnic.net URI: http://www.apnic.net Stephen Kent BBN Technologies 10 Moulton St. Cambridge, MA 02138 United States Email: kent@bbn.com Huston, et al. Standards Track [Page 8]